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Low-Temperature Broken-Symmetry Phases of Spiral Antiferromagnets
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We study Heisenberg antiferromagnets with nearest- (J1) and third- (J3) neighbor exchange on the
square lattice. In the limit of spin S ! 1, there is a zero temperature (T) Lifshitz point at J3 �

1
4 J1, with

long-range spiral spin order at T � 0 for J3 >
1
4 J1. We present classical Monte Carlo simulations and a

theory for T > 0 crossovers near the Lifshitz point: spin rotation symmetry is restored at any T > 0, but
there is a broken lattice reflection symmetry for 0 � T < Tc � �J3 �

1
4 J1�S

2. The transition at T � Tc is
consistent with Ising universality. We also discuss the quantum phase diagram for finite S.
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FIG. 1. Phase diagram of Ĥ in the limit S ! 1. The shaded
region has a broken symmetry of lattice reflections about the x
and y axes, leading to Ising nematic order. The Ising transition is
at the temperature Tc � �J3 �

1
4 J1�S

2. The spin correlation
length, �spin, is finite for all T > 0, with the T dependencies as
shown, with c=2 � c0 � 8�jJ3 �

1
4 J1j; the crossovers between

the different behaviors of �spin are at the dashed lines at T �

jJ3 �
1
4 J1jS

2. Spin rotation symmetry is broken only at T � 0
where �spin � 1. There is no Lifshitz point at finite S because it
is preempted [13] by quantum effects within the dotted semi-
circle: here there is a T � 0 spin gap 
� S exp��~cS� and spin
rotation symmetry is preserved. This semicircular region extends
over T � jJ3 �

1
4 J1jS�
. Further details on the physics within

this region appear at the end of the Letter.
Frustrated antiferromagnets have recently attracted
much interest in connection with the possibility of stabiliz-
ing unconventional low-temperature (T) phases, with novel
types of ‘‘quantum order’’ [1]. A very promising candidate
for a spin-liquid phase is the J1 � J3 model

Ĥ � J1
X
hi;ji

Ŝi � Ŝj � J3
X
hhi;jii

Ŝi � Ŝj; (1)

where Ŝi are spin-S operators on a square lattice and
J1; J3 
 0 are the nearest- and third-neighbor antiferro-
magnetic couplings along the two coordinate axes. For
this model, early large N computations, [2] and recent
large scale density matrix renormalization group
(DMRG) calculations for S � 1=2 [3] have suggested the
existence of a gapped spin-liquid state with exponentially
decaying spin correlations and no broken translation sym-
metry in the regime of strong frustration (J3=J1 ’ 0:5).

This Letter will describe properties of the above model
for large S and discuss consequences for general S. Our
results, obtained by classical Monte Carlo simulations and
a theory described below, are summarized in Fig. 1 for the
limit S ! 1. There is a T � 0 state with long-range spiral
spin order for J3 >

1
4 J1. We establish that at 0< T < Tc �

�J3 �
1
4 J1�S

2, above this state there is a phase with broken
discrete symmetry of lattice reflections about the x and y
axes, while spin rotation invariance is preserved. This
phase has ‘‘Ising nematic’’ order. We present strong nu-
merical evidence that the transition at Tc is indeed in the
Ising universality class. Such Ising nematic order[4] was
originally proposed in Ref. [2] for S � 1=2 in a T � 0
spin-liquid phase described by a Z2 gauge theory [5]. Thus
the same Ising nematic order can appear when spiral spin
order is destroyed either by thermal fluctuations (as in the
present Letter; see Fig. 1) or by quantum fluctuations (as in
Ref. [2]). Our large S results are therefore consonant with
the possibility of a spin-liquid phase at S � 1=2 as de-
scribed in Refs. [2,3]; we will discuss the quantum finite S
phase diagram further towards the end of the Letter. We
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also suggest that discrete lattice symmetries may play a
role near other quantum critical points with spiral order [6].

Broken discrete symmetries have also been discussed
[7,8] in the context of the J1 � J2 model, with first- and
second-neighbor couplings on the square lattice. However,
this model has only collinear, commensurate spin correla-
tions, and this makes both the classical and quantum theory
quite different from that considered here. As will become
clear below, the spiral order and associated Lifshitz point
play a central role in the structure of our theory and in the T
dependence of observables.
6-1  2004 The American Physical Society
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FIG. 2. The two different minimum energy configurations with
magnetic wave vectors ~Q � �Q;Q� and ~Q? � �Q;�Q� with
Q � 2�=3, corresponding to J3=J1 � 0:5.
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FIG. 3. T dependence of the specific heat for J3=J1 � 0:5.
Different symbols refer to different clusters with liner size
between L � 24 and L � 120. Data for J3=J1 � 0:1 are shown
for comparison (full dots and dashed line). Inset: size scaling of
the maximum of the specific heat.
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FIG. 4. Bottom: T dependence of the order parameter, �, [see
Eq. (2)] for different cluster sizes and J3=J1 � 0:5. The inset
shows the data collapse according to the scaling hypothesis with
Ising exponents � � 1=8 and � � 1, and Tc � 0:303. Top:
temperature dependence of the susceptibility of � for J3=J1 �
0:5. The inset shows the size scaling of the temperature corre-
sponding to the maximum of the susceptibility.
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We begin by recalling [9] the ground states of H at S �
1. There is conventional Néel order with magnetic wave
vector ~Q � ��;�� for J3=J1 �

1
4 . For J3=J1 >

1
4 , the

ground state has planar incommensurate antiferromagnetic
order at a wave vector ~Q � �Q;Q�, with Q decreasing from
� as J3=J1 >

1
4 and approaching Q � �=2 monotonically

for J3=J1 ! 1. The spiral order is incommensurate for 1
4 <

J3=J1 <1, except at J3=J1 � 0:5 where Q � 2�=3, cor-
responding to an angle of 120 � between spins (see Fig. 2).
Interestingly, for each spiral state with ~Q � �Q;Q� there is
a distinct but equivalent configuration at ~Q? � ��Q;Q�
(for Q � �). This state cannot be obtained from the one
with wave vector ~Q by a global spin rotation. Instead, the
two configurations are connected by a global rotation
combined with a reflection about the x or y axes. The
global symmetry of the classical ground state is O�3� �
Z2, with an additional twofold degeneracy beyond that of
the Néel case.

One of the main claims in Fig. 1 is that the broken Z2

symmetry survives for a finite range of T > 0, while con-
tinuous O(3) symmetry is immediately restored at any
nonzero T. We established this by extensive Monte Carlo
simulation using a combination of Metropolis and over-
relaxed algorithm for periodic clusters of size up to M �
120� 120, and for several values of J3=J1 between 0.25
and 4. Indeed, the presence of a finite T phase transition is
clearly indicated by a sharp peak of the specific heat which
is illustrated in Fig. 3 [10]. This sharp feature is to be
contrasted to the broad maximum displayed by the same
quantity for J3=J1 <

1
4 , i.e., when the classical ground state

displays ordinary Néel order. In particular, the maximum
of the specific heat is consistent with a logarithmic depen-
dence on system size (see the inset of Fig. 3) corresponding
to a critical exponent � � 0, in agreement with Ising
universality.

This critical behavior can be directly related to the
broken lattice reflection symmetry by studying an appro-
priate Ising nematic order parameter. From the symmetries
of Fig. 2, we deduce that the order parameter is � �
1=M�

P
a�a� with

�a � �Ŝ1 � Ŝ3 � Ŝ2 � Ŝ4�a; (2)
25720
where a labels each plaquette of the square lattice and
�1; 2; 3; 4� are its corners. The variables �a are zero for a
Néel antiferromagnet, while they assume opposite signs on
the two degenerate ground states in the spiral phase.
Consequently, a phase with Ising nematic order is signaled
by a h�ai � 0.

Our numerical results contain strong evidence for a
continuous Ising phase transition between a low T phase
with h�i � 0, and a homogeneous high T phase with
h�i � 0. The divergence in the specific heat (Fig. 3) is
accompanied by a divergence in the susceptibility of the
6-2
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Ising nematic order parameter �� � �M=T��
�h�2i � hj�ji2� (Fig. 4, upper panel), and by universal T
dependence in Binder’s fourth cumulant U4 �
1� h�4i=3h�2i2 (not shown). The critical exponent �
can be estimated from the size dependence of the T corre-
sponding to the maximum of the susceptibility, which is
expected to scale as Tmax�L� � Tc � aL�1=�, where Tc is
the thermodynamic critical temperature; Fig. 4 (upper in-
set) shows � � 1, as expected. The exponent � is also in
agreement with Ising universality. This can be extracted
from the scaling law j�j � L��=�f�x�, where f�x� is the
scaling function and x �  L1=� with  � jT � Tcj; this
scaling is shown in Fig. 4, upper inset, with Tc �
0:303�1� estimated from the position of the maximum of
the susceptibility and the behavior of the Binder’s cumu-
lant. Excellent data collapse is obtained for �=� � 1=8.

We have repeated a similar analysis for several values of
J3=J1 and the complete phase diagram is shown in Fig. 5,
where we have plotted Tc versus J3=J1. We find that Tc
vanishes linearly for J3=J1 ! 1=4; a theory for this behav-
ior will now be presented.

Near the classical Lifshitz point, we can model quantum
and thermal fluctuations by a continuum unit vector field
n�r;  �, where r � �x; y� is spatial coordinate,  is imagi-
nary time, and n2 � 1 at all r,  . This field is proportional
to the Néel order parameter with Ŝj / ��1�xj�yjn�rj;  �.
Spiral order will therefore appear as sinusoidal depen-
dence of n on r. The action for n is the conventional
O(3) nonlinear sigma model, expanded to include quartic
gradient terms ( �h � kB � lattice spacing � 1): Sn �R1=T
0 d 

R
d2rLn with
1.2
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FIG. 5. Critical temperature as a function of the frustration
ratio J3=J1.
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Ln �
�?

2
�@ n�2 �

'
2
��@xn�2 � �@yn�2�

�
(1
2
��@2xn�2 � �@2yn�2� � (2@2xn � @2yn

� )1��@xn � @yn�2 � �@yn � @yn�2�

� )2�@xn � @yn�2 � � � (3)

where the ellipses denote a finite number of additional )i
couplings involving four powers of n and four spatial
derivatives invariant under spin rotations and lattice sym-
metries. In the limit S ! 1, we have �? � 1=�8J1�, ' �
�J1 � 4J3�S2, (1 � �16J3 � J1�S2=12, (2 � 0, and all
)i � 0. Notice that ' crosses zero at the Lifshitz point
and so can be regarded as the tuning parameter; ' � 0
generally locates the Lifshitz point for when ' < 0 it is
energetically advantageous to have a r-dependent spiral in
n.

A convenient analysis of the properties of Sn is provided
by a direct generalization of the 1=N expansion of
Ref. [11]. The results quoted in Fig. 1 and its caption
were obtained from the N � 1 saddle point equation,
and (apart from certain preexponential factors) all func-
tional forms are exact. The saddle point implements the
constraint n2 � 1 and takes the form

3T
X
!n

Z d2k

4�2 �n�k;!n� � 1; (4)

where k is a wave vector, !n is a Matsubara frequency, and
�n is the dynamic staggered spin susceptibility with

�n�k;!n� � �m2 � �?!
2
n � '�k2x � k2y�

�(1�k4x � k4y� � 2(2k2xk2y��1:
(5)

The parameter m is determined by solving Eq. (4).
In the classical limit, S ! 1, we need only retain the

!n � 0 term in Eq. (4) [12]. A solution for m exists for all
T > 0, and leads to the crossovers in the spin correlation
length �spin shown in Fig. 1. The value of �spin, and the
pitch of the spiral order �

��������
�'

p
, as T ! 0 are obtained

from the spatial Fourier transform of �n�k; 0�.
To investigate the Ising nematic order, we need to study

correlations of the order parameter ��r;  � which we define
by a gradient expansion of Eq. (2)

� � n � @x@yn� @xn � @yn: (6)

The Ising susceptibility, ��, is then
�� �

R1=T
0 d 

R
d2rh��r;  ���0; 0�i.

In the classical limit, S ! 1, important exact properties
of �� follow from the ultraviolet finiteness of the two-
dimensional field theory with Boltzmann weight
exp���1=T�

R
d2rLn� and n independent of  . Under a

length rescaling analysis of this theory in which the (i and
)i are fixed, we see that both T and ' scale as inverse
length squared. These scaling dimensions establish that in
6-3
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the classical limit

�spin �
�����������
(1=T

q
�1�'=T�; �� � (�1

1 �2�'=T�; (7)

where �i is the cutoff independent scaling function which
depends only on ratios of the (i and )i. The Ising phase
transition is associated with a divergence of �2 at some
negative argument of order unity, and Eq. (7) then implies
the Tc ��' dependence shown in Fig. 1 and verified
numerically in Fig. 5. We can also compute �� (including
the quantum !n � 0 modes) in the large N limit:

�� � 24T
X
!n

Z d2k

4�2 k
2
xk2y�2

n�k;!n�: (8)

Using the results in Eqs. (5) and (8) predicts an exponential
divergence in 1=T as T ! 0 for ' < 0. This is, of course,
an artifact of the large N limit, as our Monte Carlo studies
clearly show that �� diverges with a power-law Ising
exponent at a Tc > 0.

We turn now to a discussion of the quantum physics at
finite S. A key feature again emerges from an analysis of
Eqs. (4) and (5) while retaining the full frequency summa-
tion: the soft spin spectrum (!� k2) at the Lifshitz point
implies that there cannot be long-range magnetic order
over a finite regime of parameters for all finite S [13].
After evaluating the frequency integral at T � 0, a solution
with m real exists for a range of values of jJ3 �

1
4 J1j

smaller than �e�~cS, implying there is a spin gap in this
regime. We can reasonably expect that the Ising nematic
order survives into at least a portion this spin gap phase, as
it does at T > 0.

A more careful analysis of the spin gap phase requires
consideration of Berry phases [2,14], which are absent in
Ln. Assuming second order quantum critical points, with
increasing J3, we first expect a spin gap state with valence
bond solid (VBS) order and confined S � 1=2 spinon
excitations after leaving the collinear Néel state.
Conversely, decreasing J3 from the spiral spin ordered
phase, we expect a Z2 spin liquid with Ising nematic order
and deconfined bosonic spinons [2,5]. So quite remarkably,
we expect the following sequence of four phases to appear
for all half-odd-integer spin S with increasing J3: Néel
long-range-order (LRO), VBS, Z2 spin-liquid, spiral LRO.
The two intermediate phases have a spin gap, and they
appear in a window which is exponentially small in S for
large S; the latter two phases have Ising nematic order.
Theories for the three quantum critical points between
these four phases appear in Refs. [14,15]. We cannot rule
out the possibility that the some of these critical points and
intermediate phases are preempted by a first order
transition.

It is interesting to note that other Z2 spin liquids with
fermionic S � 1=2 spinons have been proposed [16], in
which the ground state does not have Ising nematic order.
Our present results naturally suggest a spin gap state with
25720
Ising nematic order, and mean field theories for such states
have only been obtained with bosonic spinons [2]. Further
studies of Ising nematic order in quantum spin models will
therefore be valuable in resolving the nature of the spin-
liquid state.
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