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We study Heisenberg antiferromagnets with nearest- (J;) and third- (J3) neighbor exchange on the
square lattice. In the limit of spin § — oo, there is a zero temperature (7)) Lifshitz point at J; = }J;, with
long-range spiral spin order at T = 0 for J; > }lJ 1- We present classical Monte Carlo simulations and a
theory for T > 0 crossovers near the Lifshitz point: spin rotation symmetry is restored at any 7 > 0, but
there is a broken lattice reflection symmetry for 0 = T < T, ~ (J3 — ij 1)S2. The transition at T = T, is
consistent with Ising universality. We also discuss the quantum phase diagram for finite S.
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Frustrated antiferromagnets have recently attracted
much interest in connection with the possibility of stabiliz-
ing unconventional low-temperature (7)) phases, with novel
types of “‘quantum order” [1]. A very promising candidate
for a spin-liquid phase is the J; — J; model
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where S,- are spin-S operators on a square lattice and
Ji,J3 = 0 are the nearest- and third-neighbor antiferro-
magnetic couplings along the two coordinate axes. For
this model, early large N computations, [2] and recent
large scale density matrix renormalization group
(DMRG) calculations for S = 1/2 [3] have suggested the
existence of a gapped spin-liquid state with exponentially
decaying spin correlations and no broken translation sym-
metry in the regime of strong frustration (J3/J; = 0.5).
This Letter will describe properties of the above model
for large S and discuss consequences for general S. Our
results, obtained by classical Monte Carlo simulations and
a theory described below, are summarized in Fig. 1 for the
limit § — oo. There is a T = 0 state with long-range spiral
spin order for J; > %J 1- We establish thatat 0 <7 < T, ~
(J3 — 1J1)8?, above this state there is a phase with broken
discrete symmetry of lattice reflections about the x and y
axes, while spin rotation invariance is preserved. This
phase has “Ising nematic”” order. We present strong nu-
merical evidence that the transition at 7. is indeed in the
Ising universality class. Such Ising nematic order[4] was
originally proposed in Ref. [2] for S=1/2ina T =0
spin-liquid phase described by a Z, gauge theory [5]. Thus
the same Ising nematic order can appear when spiral spin
order is destroyed either by thermal fluctuations (as in the
present Letter; see Fig. 1) or by quantum fluctuations (as in
Ref. [2]). Our large S results are therefore consonant with
the possibility of a spin-liquid phase at § = 1/2 as de-
scribed in Refs. [2,3]; we will discuss the quantum finite S
phase diagram further towards the end of the Letter. We
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also suggest that discrete lattice symmetries may play a
role near other quantum critical points with spiral order [6].

Broken discrete symmetries have also been discussed
[7,8] in the context of the J; — J, model, with first- and
second-neighbor couplings on the square lattice. However,
this model has only collinear, commensurate spin correla-
tions, and this makes both the classical and quantum theory
quite different from that considered here. As will become
clear below, the spiral order and associated Lifshitz point
play a central role in the structure of our theory and in the T’
dependence of observables.
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FIG. 1. Phase diagram of H in the limit § — oo. The shaded
region has a broken symmetry of lattice reflections about the x
and y axes, leading to Ising nematic order. The Ising transition is
at the temperature T, ~ (J3 —$J;)S?. The spin correlation
length, &gy, is finite for all 7 > 0, with the T dependencies as
shown, with ¢/2 = ¢/ = 87|J; — £J1|; the crossovers between
the different behaviors of &gy, are at the dashed lines at 7'~
|73 — $J,18%. Spin rotation symmetry is broken only at 7 =0
where £, = 0o0. There is no Lifshitz point at finite S because it
is preempted [13] by quantum effects within the dotted semi-
circle: here there is a T = 0 spin gap A ~ Sexp(—¢S) and spin
rotation symmetry is preserved. This semicircular region extends
over T ~ |J; — }—‘Jl |S ~ A. Further details on the physics within
this region appear at the end of the Letter.
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FIG. 2. The two different minimum energy configurations with
magnetic wave vectors Q = (Q, Q) and Q* = (Q, —Q) with
Q = 2/3, corresponding to J5/J; = 0.5.

We begin by recalling [9] the ground states of JH at S =
oo, There is conventional Néel order with magnetic wave
vector Q = (m, ) for J3/J, = 1. For J3/J, >1, the
ground state has planar incommensurate antiferromagnetic
order at a wave vector O = (Q, Q), with O decreasing from
 as J;/J; > and approaching Q = /2 monotonically
for J3/J, — 0. The spiral order is incommensurate for% <
Js/J, < oo, except at J3/J; = 0.5 where Q = 27/3, cor-
responding to an angle of 120 ° between spins (see Fig. 2).
Interestingly, for each spiral state with 0 = (Q, Q) there is

a distinct but equivalent configuration at 0*=(-0 0)
(for Q # ). This state cannot be obtained from the one

with wave vector é by a global spin rotation. Instead, the
two configurations are connected by a global rotation
combined with a reflection about the x or y axes. The
global symmetry of the classical ground state is O(3) X
Z,, with an additional twofold degeneracy beyond that of
the Néel case.

One of the main claims in Fig. 1 is that the broken Z,
symmetry survives for a finite range of 7 > 0, while con-
tinuous O(3) symmetry is immediately restored at any
nonzero 7. We established this by extensive Monte Carlo
simulation using a combination of Metropolis and over-
relaxed algorithm for periodic clusters of size up to M =
120 X 120, and for several values of J;/J; between 0.25
and 4. Indeed, the presence of a finite T phase transition is
clearly indicated by a sharp peak of the specific heat which
is illustrated in Fig. 3 [10]. This sharp feature is to be
contrasted to the broad maximum displayed by the same
quantity for J5;/J; < ;11, i.e., when the classical ground state
displays ordinary Néel order. In particular, the maximum
of the specific heat is consistent with a logarithmic depen-
dence on system size (see the inset of Fig. 3) corresponding
to a critical exponent & = (0, in agreement with Ising
universality.

This critical behavior can be directly related to the
broken lattice reflection symmetry by studying an appro-
priate Ising nematic order parameter. From the symmetries
of Fig. 2, we deduce that the order parameter is o =
/MY ,o,) with
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FIG. 3. T dependence of the specific heat for J3/J; = 0.5.
Different symbols refer to different clusters with liner size
between L = 24 and L = 120. Data for J3/J, = 0.1 are shown
for comparison (full dots and dashed line). Inset: size scaling of
the maximum of the specific heat.

where a labels each plaquette of the square lattice and
(1,2,3,4) are its corners. The variables o, are zero for a
Néel antiferromagnet, while they assume opposite signs on
the two degenerate ground states in the spiral phase.
Consequently, a phase with Ising nematic order is signaled
by a{(o,) # 0.

Our numerical results contain strong evidence for a
continuous Ising phase transition between a low T phase
with (o) # 0, and a homogeneous high T phase with
(o) = 0. The divergence in the specific heat (Fig. 3) is
accompanied by a divergence in the susceptibility of the
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FIG. 4. Bottom: T dependence of the order parameter, o, [see
Eq. (2)] for different cluster sizes and J3/J; = 0.5. The inset
shows the data collapse according to the scaling hypothesis with
Ising exponents 8 =1/8 and » =1, and T. = 0.303. Top:
temperature dependence of the susceptibility of o for J3/J; =
0.5. The inset shows the size scaling of the temperature corre-
sponding to the maximum of the susceptibility.
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Ising nematic order parameter y, = (M/T) X
((a?y — {la|)?) (Fig. 4, upper panel), and by universal T
dependence in Binder’s fourth cumulant U, =
1 —(o*)/3(a*)* (not shown). The critical exponent v
can be estimated from the size dependence of the T corre-
sponding to the maximum of the susceptibility, which is
expected to scale as T, (L) = T, + aL ™'/, where T, is
the thermodynamic critical temperature; Fig. 4 (upper in-
set) shows v = 1, as expected. The exponent 8 is also in
agreement with Ising universality. This can be extracted
from the scaling law |o| = L™8/7 f(x), where f(x) is the
scaling function and x = 7LY” with 7= |T — T.|; this
scaling is shown in Fig. 4, upper inset, with 7, =
0.303(1) estimated from the position of the maximum of
the susceptibility and the behavior of the Binder’s cumu-
lant. Excellent data collapse is obtained for 8/v = 1/8.

We have repeated a similar analysis for several values of
J3/J, and the complete phase diagram is shown in Fig. 5,
where we have plotted T, versus J3/J;. We find that T,
vanishes linearly for J3/J; — 1/4; a theory for this behav-
ior will now be presented.

Near the classical Lifshitz point, we can model quantum
and thermal fluctuations by a continuum unit vector field
n(r, 7), where r = (x, y) is spatial coordinate, 7 is imagi-
nary time, and n?> = 1 at all r, 7. This field is proportional
to the Néel order parameter with S ;o (=D in(r;, 7).
Spiral order will therefore appear as sinusoidal depen-
dence of n on r. The action for n is the conventional
O(3) nonlinear sigma model, expanded to include quartic
gradient terms (& = kp = lattice spacing = 1): S, =

(l)/T dr [d*rL, with

FIG. 5. Critical temperature as a function of the frustration
ratio J5/J;.

Ly =% (@0 + £[@.n) + (3,0)]

+ (@) + (@] + & - n
+ 4[(3,n - 9,n)* + (3,n - 9,n)?]
+ A2(3,n - 9ym)? - - (3)

where the ellipses denote a finite number of additional A;
couplings involving four powers of n and four spatial
derivatives invariant under spin rotations and lattice sym-
metries. In the limit S — oo, we have y; = 1/(8J,), p =
(]1 - 4]3)S2, gl = (16.]3 - 11)52/12, gz = 0, and all
A; = 0. Notice that p crosses zero at the Lifshitz point
and so can be regarded as the tuning parameter; p = 0
generally locates the Lifshitz point for when p <0 it is
energetically advantageous to have a r-dependent spiral in
n.

A convenient analysis of the properties of S, is provided
by a direct generalization of the 1/N expansion of
Ref. [11]. The results quoted in Fig. 1 and its caption
were obtained from the N = oo saddle point equation,
and (apart from certain preexponential factors) all func-
tional forms are exact. The saddle point implements the
constraint n> = 1 and takes the form

&k B
7Y, [k o) = 1 )

where k is a wave vector, w,, is a Matsubara frequency, and
Xn 18 the dynamic staggered spin susceptibility with

Xk, w,) =[m* + x 0} + plki + k3)

5
+(kE+ k) + 205k2K2] 7L ©)

The parameter m is determined by solving Eq. (4).

In the classical limit, § — oo, we need only retain the
w, = 0term in Eq. (4) [12]. A solution for m exists for all
T >0, and leads to the crossovers in the spin correlation
length £, shown in Fig. 1. The value of &gy, and the
pitch of the spiral order ~,/=p, as T — 0 are obtained
from the spatial Fourier transform of y, (k, 0).

To investigate the Ising nematic order, we need to study
correlations of the order parameter o (r, 7) which we define
by a gradient expansion of Eq. (2)

o=mn-9d,d,n —d,n-J,n. (6)
The Ising susceptibility, then
Xo = [o/"dr [ &Ko (r, 7)a (0, 0)).

In the classical limit, § — oo, important exact properties
of y, follow from the ultraviolet finiteness of the two-
dimensional field theory with Boltzmann weight
exp[—(1/T) [d*rL,] and n independent of 7. Under a
length rescaling analysis of this theory in which the {; and
A; are fixed, we see that both T and p scale as inverse
length squared. These scaling dimensions establish that in

Xos is
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the classical limit

gspin = \ gl/T(I)l(p/T)s Xo = gf]q)Z(p/T)’ (7)

where ®; is the cutoff independent scaling function which
depends only on ratios of the ¢; and A;. The Ising phase
transition is associated with a divergence of ®, at some
negative argument of order unity, and Eq. (7) then implies
the 7, ~ —p dependence shown in Fig. 1 and verified
numerically in Fig. 5. We can also compute Y, (including
the quantum w, # 0 modes) in the large N limit:

d2k 21,2.2
v =241 [SREGGkw,). ®

dar
wll

Using the results in Egs. (5) and (8) predicts an exponential
divergence in 1/T as T — 0 for p < 0. This is, of course,
an artifact of the large N limit, as our Monte Carlo studies
clearly show that y, diverges with a power-law Ising
exponent at a T,. > 0.

We turn now to a discussion of the quantum physics at
finite S. A key feature again emerges from an analysis of
Egs. (4) and (5) while retaining the full frequency summa-
tion: the soft spin spectrum (w ~ k?) at the Lifshitz point
implies that there cannot be long-range magnetic order
over a finite regime of parameters for all finite S [13].
After evaluating the frequency integral at 7 = 0, a solution
with m real exists for a range of values of |J3 — 3/l
smaller than ~e~%5, implying there is a spin gap in this
regime. We can reasonably expect that the Ising nematic
order survives into at least a portion this spin gap phase, as
it does at 7 > 0.

A more careful analysis of the spin gap phase requires
consideration of Berry phases [2,14], which are absent in
L,,. Assuming second order quantum critical points, with
increasing J3, we first expect a spin gap state with valence
bond solid (VBS) order and confined S = 1/2 spinon
excitations after leaving the collinear Néel state.
Conversely, decreasing J; from the spiral spin ordered
phase, we expect a Z, spin liquid with Ising nematic order
and deconfined bosonic spinons [2,5]. So quite remarkably,
we expect the following sequence of four phases to appear
Sor all half-odd-integer spin S with increasing J3: Néel
long-range-order (LRO), VBS, Z, spin-liquid, spiral LRO.
The two intermediate phases have a spin gap, and they
appear in a window which is exponentially small in S for
large S; the latter two phases have Ising nematic order.
Theories for the three quantum critical points between
these four phases appear in Refs. [14,15]. We cannot rule
out the possibility that the some of these critical points and
intermediate phases are preempted by a first order
transition.

It is interesting to note that other Z, spin liquids with
fermionic § = 1/2 spinons have been proposed [16], in
which the ground state does not have Ising nematic order.
Our present results naturally suggest a spin gap state with

Ising nematic order, and mean field theories for such states
have only been obtained with bosonic spinons [2]. Further
studies of Ising nematic order in quantum spin models will
therefore be valuable in resolving the nature of the spin-
liquid state.
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